cenode.js

Revision 2.0

W.M. Webberley & A. Preece*
cenode.io | info@cenode.io

1 Preamble

This document describes CENode, a JavaScript implementation of the CEStoreE] that
is under development by IBM as part of the ITA project. As with the CEStore, ITA
CE (Controlled English) is used ‘all the way down’ for constructing and modifying a
conceptual model, and populating it with instances.

CENode (and surrounding functionalities) is distributed as a single JavaScript file,
known in this document as cenode. js, that is designed to work in a wide variety of
settings, such as within a web app, within a JavaScript application (such as Node.js),
and also as a RESTful web service. Individual devices running any type of instance
of CENode are provided with equal functionality that enables users to interact with a
CE-centred knowledge base at the edge of the network. The library also comes equipped
with a wide range of networking capabilities that enables it to interact with known peers,
subject to customisable policies, over a network connection.

Providing CEStore-style functionality at the network edge gives a number of key ben-
efits;

e Users have access to and can interact with a CENode agent directly on their device.
Any CE provided to the agent can be parsed locally and any local knowledge stored
can later be ‘told’ to other agents once a network connection is (re-)established.

e Features such as ‘autocorrect’ and CE ‘spellchecking’ can be provided at no band-
width cost. The local agent can quickly check validity of any CE as it is being
written in order to guide the user towards inputting correct CE and also giving
insight into known concepts and instances.

e Instead of relying on a single CEStore server with a centralised knowledge base,
CENode supports a network of peers with different “local” knowledge base variants.

*CENode is a joint project between School of Computer Science & Informatics, Cardiff University and
IBM UK as part of the International Technology Alliance (ITA) in Network and Information Sciences,
www.usukitacs.com/about_ital

Lwww.ibm.com/developerworks/

http://cwenode.io
mailto:info@cenode.io
http://www.usukitacs.com/about_ita
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=558d55b6-78b6-43e6-9c14-0792481e4532

All communication with instances of CENode should be made through CE. Indeed,
modifying the knowledge base requires users (or other agents) to submit information in
CE, whilst extracted information can be returned programmatically in JS object format.

It should be noted that CENode does not aim to be a fully-fledged CE engine, in
that it lacks certain capabilities that more complex systems support, such as rules.
CENode is instead designed to be lightweight and easily-deployable and focuses on core
CE functionality - supporting a conceptual model and instance management - and the
blackboard architecture (see Section through the CECard conversational protocol.

For further information on CE and the CECard protocol, please see references [2} [3, 4]
in the bibliography.

The rest of this document highlights the key features of CENode and describes ways
in which it can be deployed and used for a wide range of applications. Throughout the
document, samples of CE are shown in this font, while samples of JavsScript code are
shown in this font.

2 Supported Sentence Types

A formal description of the CE language is provided in [I]. CENode is designed with an
aim to be fully compatible with the subset of CE covering model and instance creation,
enabling interoperability between CENode and CEStore implementations. This section
describes the types of CE sentences understandable by CENode, and some additional
supported sentence forms.

Please note that CENode does not (currently) support CE rules or the ‘expressed by’
clause used to declare synonyms.

2.1 Supported ITA Controlled English Sentence Types

All modifications to the CENode conceptual model are made through conceptualise state-
ments.

For example, the sentence below creates a new concept, called ‘teacher’ as a subclass
of the concept ‘person‘ (assuming that ‘person’ has already been conceptualised):

conceptualise a ~ teacher ~ T that is a person.

Since, in this example, we have declared that a teacher is a type of person, then the
CENode will allow instances of teacher to be made with the properties associated with
the person concept.

The following sentence modifies the ‘teacher‘ concept to add some further properties:

conceptualise the teacher T ~ teaches ~ the class C and has the subject S as ~ sub-
ject ~ and has the value A as ~ age ~.

Submitting the above sentences to CENode will create and modify the ‘teacher’ con-
cept. If ‘class’ and ‘subject’ are not already concepts in the model then the second

sentence will fail to execute, since the node will be unable to correctly infer the types

related to this concept. If the sentence is executed correctly, then the node will allow

new instances of ‘teacher’ to have a teaches relationship and have subject and age values.
New instances of an existing concept can be declared with normal CE:

there is a teacher named 'Mrs Smith'.

As long as ‘teacher’ has been declared as a concept, then our ’Mrs Smith’ instance
will be created. We can then modify this instance:

the teacher 'Mrs Smith’ teaches the class 'B2’ and has the subject 'Computing’ as sub-
ject and has '45' as age.

In this example, CENode will attempt to do some more work on behalf of the user
or agent providing this information. If, for example, the subject ‘Computing’ had not
yet been declared as an instance of subject, then a new instance of type subject named
‘Computing’ will be created. The same applies for the class ‘B2’. Since age is simply a
value of no particular type, there is no new instance to be created here, but the value will
be embedded inside the 'Mrs Smith’ object type. Supporting implicit instance creation
is not as dangerous as the conceptualising equivalent, since it only involves creating an
empty instance of a concept that already exists.

Note that if a property is encountered in the input CE that is not declared in the
‘teacher’ conceptual model (or in any of its ancestors), then this property will be ignored.
The remainder of the sentence will still be executed. As with the CEStore, instance and
concept deletion is not supported.

2.2 Additional Supported Sentence Types

CENode is also able to understand some additional sentence structures to make inter-
action a little easier and to support information extraction. These sentences are not
CE, and are instead a form of gist [2]. However, they can be safely sent to a CENode,
which automatically processes them as if they are valid CE. In addition, whilst the CE
specification defines valid sentences to be those ended in a full-stop (period), CENode
will also accept sentences that do not.

2.2.1 Shorthand instance modification

One key addition to the grammar is a shorthand for modifying instances. The above
‘teacher’ example can be re-written as:

Mrs Smith teaches the class 'B2" and has the subject 'Computing’ as subject and has '45’
as age.

CENode will attempt to resolve instance names to form a valid CE sentence, which

is then parsed. Note that instance names in this type of sentence do not need to be
case-sensitive. Replacing ‘Mrs Smith’ in the above example with ‘mrs smith’ will still
work.

In addition, CENode will process one-word instance names that are not quoted, but
multi-word names and all values still need to be quoted:

Mrs Smith teaches the class B2 and has the subject computing as subject and has '45’
as age.
2.2.2 Question-asking

Another addition to CENode is the ability to answer questions. This addresses the
‘who/what/where’ information useful to researchers and also allows information to easily
be extracted from the node in an easy-to-understand gist format. Note that although,
technically speaking, questions in this format are themselves gist, CENode treats them
as if they are valid CE, so that they can safely be embedded in ask cards.

To this end, ‘who’ and ‘what’ questions are understood in the same way by the node.
This means that the questions below are equal in meaning:

what is mrs smith?
who is mrs smith?

Both of these questions would result in a gist output looking something like the fol-
lowing:

Mrs Smith is a teacher. Mrs Smith teaches the class ‘B2’ and has the subject 'Computing’
as subject and has '45" as age.

‘Who’ and ‘what’ questions can also be used to find out about concepts and properties.
For example, the sentence

what is a teacher?
would result output similar to:

A teacher is a type of person. An instance of teacher teaches a type of class and has a
type of subject called subject and has a value called age.

Similarly, asking
what is teaches?

would give:

'teaches’ describes the relationship between a teacher and a subject (e.g. "the teacher
'"TEACHER NAME' teaches the subject 'SUBJECT NAME™).

‘Where’ questions work slightly differently and requires the CORE node model (see
later) to be loaded to the store. ‘Where’ questions are only valid for instances, and will
only provide a response if the instance in question has a property associated with some
kind of location.

The CORE model includes a concept called location which can be used as a parent of
other types of location (e.g. a building, a room, a road, etc.). As long as the instance in
question has a property relating to any concept that has location as an ancestor, then a
meaningful response can be obtained.

For example, let’s assume that the person concept (that teacher inherits from) sup-
ports a relationship called ‘lives in’ that targets an instance of type house, which is a
child of location:
the teacher Mrs Smith lives in the house 'Number 23'.

We can now ask a ‘where’ question:

Where is Mrs Smith?
and receive a response:
Mrs Smith lives in the house 'Number 23'.

Similarly, since the house ‘Number 23’ is a location, we can ask questions like:
what is in Number 23?7 (who is in Number 237 would also work)
and receive a response:

The teacher Mrs Smith lives in the house Number 23.

In general, CENode ignores stop words and punctuation, so the following are all valid
questions:

what is an apple?
where is the banana?
Who is Mrs Smith

2.2.3 NL-parsing

CENode comes with a rudimentary natural language parser, which will attempt to eval-
uate a natural language input and return a CE string representing a guess at what the
input meant.

This NL-parsing heavily relies on the state of the node’s own KB. Therefore, the more
the node knows about a particular domain in terms of instances and concepts (and the
properties they have), the more accurately it will be able to understand the input.

3 Node Models

A node’s knowledge base (KB) represents the concepts and instances it knows about.
Providing CE to the node updates the KB and asking questions allows the KB to be
queried. Models allow a skeleton KB to be produced from which the knowledge can grow
as new CE is added to the node.

A CE model is essentially a collection of CE sentences that can be delivered to a node
in order to develop its conceptual model and populate its KB with initial instances.
Since the CENode library is written in JavaScript, then a model is simply an array of
CE sentences. For example, consider a simple model:

var my_model = [
"conceptualise a

teacher ~ T.",

"conceptualise a ~ class 7 C.",

"conceptualise the teacher T ~ teaches ™ the class C.",

"there is a teacher named ’Mrs Smith’ that teaches the class ’B2’."

1;

This model can then be loaded into an instance of CENode when the node is instan-
tiated. See Section [for more details on this.

cenode. js comes bundled with models that can be used to initialise a CENode in-
stance with some basic knowledge. As mentioned previously, loading such a model is
sometimes mandatory (for example, when querying for an instance’s location), since the
models may include concepts and instances necessary for interacting with such informa-
tion. As we progress through this document, the purpose of core models will become
more clear.

It is usually recommended that any instance of CENode is at least supplied the CORE
model, as this includes the location concept, as well as other concepts that are useful to
subclass when further populating the model. These models are included in cenode. js’s
MODELS object, so that the CORE model can be accessed by MODELS.CORE.

Currently, only the CORE model is recommended for general use. Instantiating a
CENode with a particular model in different types of applications is described later on.

4 CENode Agents

Each CENode instance is accompanied by its own agent. A node’s agent is spawned upon
the node’s instantiation and represents the recommended interface between the node’s
KB and its user. In a multi-node system, agents also handle any node-node interaction
through the respect of ‘policies’ (see Section .

A CENode agent, although bundled with cenode. js, is actually entirely separate from
the node’s KB, and in fact has no more access to the conceptual model than another
user programmatically using the library. Agents only work properly when the CORE
model has been loaded, and each agent in a given CENode system should have a unique
name, which by default is ‘Moira’ in the code. Information about an agent can be added
to a node’s KB (whether this refers to the local or another agent) using CE as follows
(assuming that the CORE model has been loaded):

there is an agent named 'agentl’.

4.1 Cards

Agents are only useful when ‘cards’ are used as a delivery mechanism for CE, which forms
the basis of the blackboard architecture implemented by the CEStore, and which is also
used as the recommended primary means for human-node and node-node communication
in CENode. Different types of card extend from the card concept, and they are all
included in the CORE model. Cards wrap CE in a value property and enable the
information within to be shipped to different agents as required, and a particular agent
will only ‘open’ a card to reveal the contents if the agent is an intended recipient.

It is rare that the card concept is used directly. Instead, one of its subclasses should
be used, since the type of card determines what the information contained represents
and what the response (if any) should be. Here is an example of a tell card:

there is a tell card named 'msgl’ that is to the agent 'agentl’ and is from the agent 'agent2’
and has the timestamp '123456’ as timestamp and has 'there is a teacher named \'Mrs
Smith\" as content.

A tell card should be used to tell a particular agent some information, and an ask card
should be used to query for some information. Using what we’ve covered so far, all of
the conceptualise and instance-manipulation sentences would go into a tell card and the
questions discussed in Section 1.2.2 would be wrapped in an ask card. Using the correct
kind of card. The 'from’ field of a card can be used by an agent to send back a response,
if needed, and some agents may decide to ignore cards that have an old timestamp.

4.1.1 Tell cards

This type of card should be used to envelope valid CE. If the CE is correctly parsed by
the node, then a suitable response might be returned by the agent.

Since tell cards are the only type of card that can act as a vehicle for CE, only the
content of these cards can be used to modify the node’s KB (other than to add the card
instance, which would occur even if the CE content is invalid).

4.1.2 Ask cards

Ask cards are used to query the node’s KB, and whose content must conform to one of
the supported question structures (see Section .

The agent responsible for handling this card may reply with a suitable response, or
an error message if the question is invalid.

4.1.3 NL cards

If unsure on the type of information that is to be contained in the card, then an nl card
can be used. Agents work with NL cards in the following order (a failure causes the next
step to be evaluated):

1. Test for CE-compliance: if the card’s content is valid CE, the agent will automti-
cally write a new tell card, with the same content, from the original sender and
to itself. The effect is therefore the same as directly adding a tell card containing
valid CE. This process is known as autoconfirming.

2. Test if question: if the card contains a valid question, then the agent will write
a new ask card with the same content, from the original sender and to itself.
The effect is therefore the same as directly adding an ask card containing a valid
question. This process is known as autoasking.

3. Lastly, the content is given to the node in an attempt to understand what was
meant by the card. This step tries to parse the input NL and, if successful, will
result in a confirm card in reply to the input card containing a guess at the CE
best representing the input content. This card can then be confirmed by sending
a tell card in reply to the confirm card with the content of the confirm card. This
may then cause the node’s KB to be updated.

4.2 Blackboard Architecture

As mentioned, agents begin their life when the CENode they are associated with is
instantiated. Agents continuously check their node’s KB for any cards that are addressed
to themselves. If a card is found that is addressed to and hasn’t yet been seen by the
agent, then the agent will act upon it.

If the card is a tell card, then the agent will open up the CE content contained within
and feed it into its node with the aim of modifying its KB. If the card is an ask card,
then the agent will attempt to answer the question and send a response back to the
entity that initially sent the card.

If a card instance exists in a node’s KB and the node’s local agent is not a recipient,
then no further action will occur for this card on this node. Of course, any programs

using the cestore. js library may decide to do something with it, but generally it will be
ignored by the local agent (unless its name is changed to that of the intended recipient).

Although this may seem useless, it actually forms the basis for the blackboard archi-
tecture, in which agents and users can read and write cards from and to a node. Later on
in this document we’ll cover policies, which allow agents to communicate automatically
with each other in different ways. Submitting CE to agents wrapped in cards allows
only the information that is actually needed by each node to be read by the agent of
that node.

In general, any valid CE submitted to a node will be parsed immediately and the
node’s conceptual model appropriately updated. Sometimes, the node will return a
response immediately (either programmatically or in a response to a HTTP request)
containing some relevant information. This usually only occurs when the CE represents
a who/what/where question. However, when submitting CE within a card envelope,
no response will be returned. This is because creating instances does not invoke a
response fom the node and agents work separately and asynchronously from the rest
of the CENode process. Agents will read cards from their node in their own time and
will write responses back to it when necessary (e.g. in the case of an ‘ask card’ being
submitted). When submitting cards, the contained CE is, essentially, parsed twice.
Once when the card is initially submitted to the node (a process which involves adding
an instance of ‘card’ along with its associated information). The second time is when
the agent comes round to picking cards from the node and re-submitting the contained
CE directly.

5 Using CENode

Generally, the installation and inclusion of CENode into your project is very simple, as
all that is required is an import of the cenode. js library. This section describes how
this can be done more clearly.

5.1 In a Web Application or Webpage

In a web application or webpage, the cenode. js library can be easily imported:
<script src="cenode.js"></script>

Once imported, a new CENode instance can be instantiated in a later <script> block
and any required models can be passed as arguments. After instantiation, sentences can
be added as direct CE (or embedded within cards):

<script>
var node = new CENode(MODELS.CORE, MY_CUSTOM_MODEL) ;
node.set_agent_name("agentl");

node.add_sentence("there is a teacher named ’Mrs Smith’");

node.add_sentence("there is a tell card named ’{uid}’ that is to the agent
’agentl’ and is from the individual ’userl’ and has the timestamp
’{now}’ as timestamp and has ’there is a teacher named
\’Mrs Smith\’’ as content");

</script>

Since we have set the node’s agent’s name to ‘agent1’, both of the add_sentence lines
would have equal functionality (although the node will prevent multiple instances being
created with the same name and same type). In the former case, the CE will be parsed
directly and the teacher will be added to the node’s KB. In the latter, the card will be
added to the KB, and the local agent will eventually find the card and update the KB
further with the relevant information contained in the card.

Both {uid} and {now} are special character sequences that will be modified by the
node once received. Please see Section [7] for more information on these and for other
features available to applications using the library in such a way.

5.2 In a JavaScript Application

The library is also usable as part of a Node.js program. To get started with this, you will
need to first install the Node.js environment. This can be done by visiting their web-
site to download the necessary files (https://nodejs.org) or by using an existing package
manager on your system.

For example, with Arch Linux:

pacman -S nodejs
with Ubuntu:
apt-get install nodejs
and with OS X (with Homebrew installed):
$ brew install node
Please note that the library is also mostly compatible with other JavaScript runtimes,
such as io. js.

Once Node. js has been installed, you can create a simple Node.js app in a similar
way to using the library in a web app:

var cenode = require("./cenode.js");

var node = new cenode.CENode(cenode.MODELS.CORE) ;
node.add_sentence(...)

10

. etc.

Beyond this point, functionality is precisely the same as that when the library is used
in a web application. For more information on the programmatic API, please see Section

ik

5.3 As a RESTful Service

cenode. js also supports being run directly as a service using Node.js. To accomplish
this, then Node.js needs to first be installed as described in the previous section. After
installation, then the service can be started by running:

$ node cenode.js
Set local agent’s name to ‘Moira’.
CENode server instance running on port 5555...

By default this will start a web server on port 5555 with a local agent named ‘Moira’.

The CENode instance run in this way provides a webpage that you can use to admin-
ister the instance. To do so, visit localhost:5555 in a web browser (or the hostname
of the machine running the instance if not local). You will be presented with a display
indicating some information about the node instance and will allow some simple controls
(such as model-loading and sentence-inputs).

The CENode instance can be launched with different configurations by supplying
command-line arguments. For example the below command will start the service on
port 5432 and will set the name of the agent to ‘agentl’ (the output from the server is
included below for your information):

$ node cenode.js agentl 5432
Set local agent’s name to ‘agentl’.
CENode server instance running on port 5432...

Once running, a RESTful interface is exposed to interact with the Node. For more
information on this, please see Section

6 Multi-Node Systems

As described earlier, CENode instances can either be run independently or as part of a
multi-node system. This section outlines methods on how this might be accomplished.
In a typical multi-node system, at least one of the nodes will need to be run as a service
exposing the required HTTP endpoints.

11

6.1 General

All CENode instances in a multi-node system are, by default, equal in terms of func-
tionality and behaviour. This is the case even if each node is deployed in a different
way (e.g. some nodes may be running as a service, some as a web application, and some
as a programmatic JavaScript application). Providing information to (and retrieving
information from) a local node is simple, as shown briefly earlier and in more detail later
on, and supporting inter-node communication is also relatively easy.

The cenode. js library comes equipped with the ability to allow agents to commu-
nicate over the network with other agents, and will adapt automatically to the envi-
ronment it exists in. For example, if running in a web page it will use the browser’s
XMLHttpRequest object, and if running as a Node.js app it will use Node.js’s http mod-
ule. Either way, there is no intervention required by users when deploying a CENode as
part of a multi-node system on a variety of platforms.

6.2 Policies

All inter-node communication should be described by policies. These are essentially
instructions, written in CE, that instruct individual nodes to communicate with each
other in different ways. All policy types understood by the agent are included in the
CORE model (see Section [3)).

Policies written to a particular CENode represent instructions that apply to its local
agent. Agents periodically query the policies that are in their node’s KB and act upon
them accordingly. As such, policies can be created and modified using plain CE once
the CENode instance is running with almost immediate effect.

All policies in the CORE model have an ‘enabled’ field, and any particular policy is
active as long as this field is set to ‘true’. For example, to disable a particular policy,
named ‘pl’, you could issue the following CE:

the policy 'pl has 'false’ as enabled.

The local agent will now no longer act on this policy.
The rest of this Section describes the different types of policy in more detail.

6.2.1 tell policy

A tell policy inherits from policy and instructs the appropriate agent to tell the policy’s
target agent everything that the local agent is told.

For example, imagine our loocal agent is called ‘agentl’ and we tell it about the fol-
lowing agent:

there is an agent named 'agent2’ that has 'agent2.address.com’ as address.

We can now create a tell policy targeting this agent:

12

there is a tell policy named 'pl’ that has 'true’ as enabled and has the agent 'agent2’
as target.

Once this policy has been created, then our local agent, ‘agentl’; will tell ‘agent2’
every piece of information that has been told to ‘agentl’ in tell cards by wrapping the
content in a new tell card and HTTP POSTing this to the appropriate endpoint at
‘agent2”’s host address. As such, ‘agent2’ needs to be an agent running as a service
instance. Please see Section for instructions on setting this up.

Any cards which do not have ‘agentl’ as a recipient (or any other type of card) will
not be included as part of the policy.

6.2.2 ask policy

An ask policy works in almost exactly the same way as a tell policy (with our local agent
named ‘agentl’):

there is an ask policy named 'pl’' that has 'true’ as enabled and has the agent 'agent2’
as target.

In this scenario, every ask card sent to ‘agentl’ will also be sent to ‘agent2’ using a
HTTP POST request. As with targets of a tell policy, target agents of an ask policy must
be instances running as a service instance.

Ask policies are mostly useless unless the agent acting on the policy is able to receive
a response from the policy’s target. As discussed in Section communication between
agents and individuals using cards is asynchronous, and therefore an answer to a question
cannot be included in the response of the POST request made as a result of the policy.
In reality, when an ‘ask card’ is POSTed to the target, its agent will get round to reading
the card in its own time and will write a card back to its own store if the card requires
a reply.

Therefore, most multi-node setups using an ‘ask policy’ will also involve a ‘listen policy’
targeting the same target as the ‘ask policy’. See Section for more information.

6.2.3 listen policy

A listen policy instructs the local agent, ‘agent1’, to periodically poll the target agent for
instances of ‘tell card’ sent to ‘agentl’. Any cards found are opened and the content is
added to the agent’s node’s KB as normal.

As with the previous two policy types, any target agent must be in a node running a
as a service instance.

Listen policies are useful in conjunction with ask policies, since they enable a response

to be retrieved from the target of the ask policy. For example, consider the following
setup (assuming the local agent is named ‘agent1’):

13

there is an agent named 'agent2’ that has 'agent2.com’ as address.

there is an ask policy named 'pl’ that has 'true’ as enabled and has the agent 'agent2’ as
target.

there is a listen policy named 'p2' that has 'true’ as enabled and has the agent 'agent2’ as
target.

This setup will cause ‘agentl’ to forward all ask cards it receives to ‘agent2’ and will
be able to receive a response from ‘agent2’; through the listen policy, once ‘agent2’ has
read and replied to the ask card.

6.2.4 forwardall policy

A forwardall policy is slightly more complex because it has more options in its configura-
tion. The general principle is that the agent the policy is active on will forward some tell
cards that have been sent to this agent on to a set of other agents as required. Unlike the
other policy types, a forwardall policy does not trigger any network requests. Instead, any
card-forwardings are made simply by adding targets as recipients of the cards. These
can then be retrieved by other agents who have a listen policy targeting this node.

As with the previous examples, imagine the local agent which is acting on the forwardall
policy is named ‘agent1’.

The construction of a forwardall policy might look like this:

there is a forwardall policy named 'pl’ that has 'true’ as enabled and has the timestamp
'0" as start time and has 'true’ as all agents.

In the above example, any tell cards that have previously been sent to ‘agent1’ and any
arriving in future whilst the policy is enabled will have every agent known by agentl’s
node added as a recipient. Then, if any of these agents make a request to this node (as
a result of a listen policy or otherwise), they can access these cards.

A node can discover other agents in two primary ways. One is explicit, in that the
node has been given CE to describe a new agent:

there is an agent named 'agent2’.
The other is implicit, where the node will add to its KB any unknown instances that
are mentioned. For example, assume the node does not yet have the agent ‘agent2’ in

its KB and then receives the following card:

there is a tell card that is to the agent 'agentl’ and is from the agent 'agent2’ and has
"there is a teacher named Mrs Smith’ as content.

In this case, the node will automatically create an instance of agent named ‘agent2’,
thus discovering its existence.

14

The ‘start time’ field specifies that the policy should only affect cards with a timestamp
greater than this, and so this can be set to ‘0’ to activate the policy for all tell cards
sent to ‘agentl’ during its lifetime. The ‘all agents’ field is a boolean which, if ‘true’,
specifies that all known agents should be added as a recipient.

If ‘all agents’ is set to ‘false’ instead, then a set of agent recipients can be specified.
Consider the more complex example below:

there is a forwardall policy named 'p2’ that has 'true’ as enabled and has the timestamp
12345’ as start time and has the agent 'agent2’ as target and has the agent 'agent3’ as
target

In the above example, the policy will cause the agent ‘agentl’ to add both ‘agent2’
and ‘agent3’ as recipients to all tell cards sent to ‘agent]l’ with a timestamp greater than
12345’ from now until the policy is disabled.

6.2.5 feedback policy

A feedback policy can be applied to an agent in order to make it give some kind of
feedback to the agent or individual that has submitted a ‘tell card’ to it. This behaviour
might be useful for providing information on input submitted to the node, and allows
the local agent to report any misunderstandings in the input CE.

A feedback policy follows a similar setup to the other policy types, in that it can be
enabled and can target a particular agent or individual, but, like the forwardall policy
it will not invoke a network request. Instead, any feedback is included in a tell card
addressed to the target, which is written to the agent’s own node. Thus, if responses are
required over the network, a listen policy must also be used.

Since no network activity is directly involved (unless there is a listen policy in place),
this type of policy is mostly useful for JavaScript or web applications using the cenode. js
library directly. Imagine that the local agent is named ‘agent1’ and there is a user, known
as the individual ‘individuall’, that is submitting information to the node’s agent through
tell cards:

there is a feedback policy named 'pl’ that has 'true’ as enabled and has the individual
'individuall’ as target and has 'full’ as acknowledgement.

With this policy in place, ‘agent1’ will respond to all tell cards sent from ‘individuall’
with a full description of the action taken by ‘agentl’ on the node. If this is an error
message, then the node will attempt to include information on which parts of the in-
put sentence were not understood. If the message was understood fully, then the full
understood CE will be returned in the response.

For security, it may sometimes be necessary for nodes to be restricted on the informa-
tion returned. For example, in order to keep the inner knowledge of the node obfuscated
for whatever reason, the acknowledgement property of the policy can be set to ‘basic’. In
this scenario, only an ‘OK’ will be sent back to the agent or individual that submitted

15

the original tell card, with no indication of the inner knowledge of the node.
To keep agents from giving any feedback whatsoever, then simply disable the policy
or don’t set the policy in the first place.

6.3 Example Network Topologies Using Policies

Using policies allows for a wide variety of possible network topologies. Combining policies
allow for useful configurations of multi-node setups. This section outlines a couple of
examples for inspiration.

6.3.1 ‘Point-to-point topology’

In this example, two CENode instances communicate directly to each other by telling
each other everything.

To implement this, two instances of CENode (each with a different names) running
as services need to be launched. Each instance needs to know the address of the other
instance’s agent and a tell policy is needed on each node.

For example, consider ‘agent1’ runs on ‘agentl.com’ and ‘agent2’ runs on ‘agent2.com’.
The configuration CE can be added on each instance’s webpage control panel (see Section
for more information).

On agent1’s node, the following sentences are required:

there is an agent named 'agent2’ that has 'agent2.com’ as address.
there is a tell policy named 'pl’ that has "true’ as enabled and has the agent 'agent2’ as target.

Agent2’s setup is symmetrical:

there is an agent named 'agentl’ that has 'agentl.com’ as address.
there is a tell policy named 'p1’ that has 'true’ as enabled and has the agent 'agentl’ as target.

6.3.2 ‘Star topology’

In this example, one CENode instance, at the centre of the star, acts as a router of
information between any number of ‘client’ nodes. The router node needs to be run as
a service, but the clients can be run in any configuration. In this scenario, each node
will tell the router everything it knows, and the router will forward this information on
to every other client node.

Firstly, each client node needs to know about the router node and to tell it everything
and listen for any cards the router node might have for it:

there is an agent named 'router’ that has 'router.com’ as address.

there is a tell policy named 'pl' that has 'true’ as enabled and has the agent 'router’ as
target.

there is a listen policy named 'p2’' that has 'true’ as enabled and has the agent 'router’ as

16

target.

Secondly, the router node needs to simply forward every message it receives on to
every agent it knows about:

there is a forwardall policy named 'pl’ that has 'true’ as enabled and has the timestamp
'0" as start time and has 'true’ as all agents.

7 CENode API

This section is now deprecated and has been removed. Instead, please see the separate
API document outlining the APIs supported by CENode. This can be found in the root
of CENode’s home repository at github.com/flyingsparx/CENode.

References

[1] D. Mott. Summary of ITA Controlled English. ITA Technical paper, 2010.
https://www.usukita.org/papers/5658 /details.html.

[2] A. Preece, D. Braines, D. Pizzocaro, and C. Parizas. Human-machine conversa-
tions to support multi-agency missions. ACM SIGMOBILE Mobile Computing and
Communications Review, 18(1):75-84, 2014.

[3] A. Preece, C. Gwilliams, C. Parizas, D. Pizzocaro, J. Z. Bakdash, and D. Braines.
Conversational sensing. In Proc Next-Generation Analyst 11 (SPIE Vol 9122). SPIE,
2014.

[4] P. Xue, S. Poteet, A. Kao, D. Mott, D. Braines, C. Giammanco, and T. Pham.
Information extraction using controlled english to support knowledge-sharing and
decision-making. In 17th ICCRTS: Operationalizing C2 Agility, 2012.

17

https://www.usukita.org/papers/5658/details.html

	Preamble
	Supported Sentence Types
	Supported ITA Controlled English Sentence Types
	Additional Supported Sentence Types
	Shorthand instance modification
	Question-asking
	NL-parsing

	Node Models
	CENode Agents
	Cards
	Tell cards
	Ask cards
	NL cards

	Blackboard Architecture

	Using CENode
	In a Web Application or Webpage
	In a JavaScript Application
	As a RESTful Service

	Multi-Node Systems
	General
	Policies
	tell policy
	ask policy
	listen policy
	forwardall policy
	feedback policy

	Example Network Topologies Using Policies
	`Point-to-point topology'
	`Star topology'

	CENode API

